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Communicated by G. Orlandini

Abstract. We present an analysis of two-proton shell gaps in Sn isotopes. As theoretical tool we use
self-consistent mean-field models, namely the relativistic mean-field model and the Skyrme-Hartree-Fock
approach, both with two different pairing forces, a delta interaction (DI) model and a density-dependent
delta interaction (DDDI). We investigate the influence of nuclear deformation as well as collective correla-
tions and find that both effects contribute significantly. Moreover, we find a further significant dependence
on the pairing force used. The inclusion of deformation plus correlation effects and the use of DDDI pairing
provides agreement with the data.

PACS. 21.10.Dr Binding energies and masses – 21.10.Pc Single-particle levels and strength functions –
21.60.Jz Hartree-Fock and random-phase approximations – 24.10.Jv Relativistic models

1 Introduction

Understanding nuclear shell structure has been a key issue
of nuclear physics for decades [1,2]. It remains a topic of
large current interest in connection with nuclei far from
the valley of stability for which a large pool of new data is
now available [3]. The predictive value of nuclear structure
models in the various regimes of exotic nuclei depends very
much on their ability to describe shell structure in quanti-
tative detail, particularly for superheavy nuclei with their
subtle dependence on shells [4,5]. On the other hand, there
is the basic problem that we do not dispose of observables
which give direct experimental access to the single-particle
levels of nuclei. There is the seemingly “direct” deduc-
tion through separation energies and excitation spectra of
neighboring odd nuclei. The proper modeling of these ob-
servables by mean-field models, however, is rather involved
as it requires inclusion of a proper blocking description,
polarization effects and breaking of time-reversal symme-
try [6,7]. It is desirable to have complementing informa-
tion on the single-particle structure and one hopes that
data deduced only from even-even nuclei give simpler ac-
cess to spectral gaps. In this context the two-nucleon shell
gaps are often considered [8]. They are simply the second
differences of binding energies and thus easily available
from experiment. The workload comes on the theoreti-
cal side because this quantity, being a difference of large
numbers, is extremely sensitive to all sorts of corrections
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and thus requires careful modeling. Systematic measure-
ments on the long chain of Pb isotopes [3,9] have shown
a steady decrease of the two-proton shell gap towards the
proton drip line indicating some shell quenching. It was
found in a subsequent theoretical analysis that deforma-
tion masks the data such that the two-proton shell gap
shows a quenching while the spectral gap does not [10].
Proper inclusion of deformed mean fields brought satis-
factory agreement with the experimental results. It is the
aim of the present paper to continue these investigations
for a different test case, namely the two-proton shell gap in
the chain of Sn isotopes. It will turn out that deformation
effects are as important as they were in the case of the
Pb isotopes, but we will find also that ground-state de-
formation alone is insufficient to explain the experimental
two-proton shell gaps in Sn. Thus we have extended the
studies to include a new aspect, namely the effect of col-
lective ground-state correlations on the two-proton shell
gaps. We will consider two brands of mean-field models,
namely the relativistic mean-field model (RMF) as well as
the non-relativistic Skyrme-Hartree-Fock (SHF) approach
and a variety of parameterizations within both models.
For technical reasons, the study of ground-state correla-
tions is confined to SHF models.

The paper is outlined as follows: In sect. 2, we very
briefly explain the formal framework, the mean-field mod-
els and the treatment of collective correlations. In sect. 3,
we present and discuss the results, where subsect. 3.1
is concerned with deformed mean-field states and sub-
sect. 3.2 with the impact of ground-state correlations.
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2 Framework

2.1 Self-consistent mean-field models

Our investigation is performed in the framework of self-
consistent mean-field theories, namely the non-relativistic
Skyrme-Hartree-Fock approach (SHF) and the relativis-
tic mean-field (RMF) model, for the formal details and
an extensive discussion of their properties see [11]. More-
over, we employ for the RMF two slightly different brands,
namely the traditional variant with finite-range meson ex-
change (RMF-FR) [12,13] and the more recent version
employing point couplings (RMF-PC) [14,15]. This span
of models explores different physical ingredients: a com-
parison of SHF with RMF tests the non-relativistic ver-

sus relativistic approach, the comparison of RMF-FR and
RMF-PC tests the importance of finite-range mean fields.
In each of these models, there exists a great variety of
different parameterizations which all deliver a compara-
ble and excellent description of bulk properties in stable
nuclei but can differ substantially in the realm of exotic
nuclei or when looking at more subtle observables, as we
will do here. One thus has to use in such investigations
a representative sample of different parameterizations to
disentangle genuine mean-field effects from particularities
of a given parameterization. From the SHF family we will
consider: SkM∗ as a widely used traditional standard [16],
Sly6 as a recent fit which includes information on isotopic
trends and neutron matter [17], SkI3 as a fit which maps
the relativistic isovector structure of the spin-orbit force
and takes care of the surface thickness [18], and SkO [19]
as a recent fit in a similar fashion as SkI3 but with bias
on a larger effective mass and a better adjusted asymme-
try energy. For the RMF model, we consider the RMF-
FR parameterizations NL-Z2 [20] and NL3 [21] as well
as the RMF-PC force PC-F1 [15]. Both NL-Z2 and PC-
F1 have been fitted to a similar set of data as SkI3 and
SKO, including information on the nuclear charge form
factor. NL3 has been adjusted with particular emphasis on
isovector properties and incompressibility. For all models,
pairing is added at the level of BCS with Lipkin-Nogami
correction. We use a zero-range delta interaction (DI)

Vpair = V
(DI)
ν δ(r1 − r2) as pairing force, and as alterna-

tive recipe we use the density-dependent delta-interaction

(DDDI) [22–24] Vpair = V
(DDDI)
ν δ(r1 − r2) [1− ρ(r̄)/ρ0].

In both cases, ν stands for protons or neutrons. The pair-

ing strengths V
(DI)
ν or V

(DDDI)
ν are adjusted such that

the average pairing gaps ∆̄ =
∑

αuαvα∆α/
∑

αuαvα
[25] are fitted to the pairing gaps from the experimental
odd-even staggering of binding energies in a few repre-
sentative semi-magic nuclei. Actually, we use Sn isotopes
for the neutron gaps, namely ∆n(

112Sn) = 1.41MeV,
∆n(

120Sn) = 1.39MeV, ∆n(
124Sn) = 1.31MeV, and

some N = 82 isotones for the proton gaps ∆n(
136Xe) =

0.98MeV,∆n(
144Sa) = 1.25MeV. The adjustment is done

for each force separately because the much different effec-
tive masses call for different pairing strengths in each case.
The gaps are well fitted in the average (better than 1%).
The trends are reproduced within at least 10% precision.

Table 1. Nuclear matter properties for the considered forces:
saturation density ρnm in units of fm−3, binding energy E/A in
units of MeV, incompressibility K∞ in units of MeV, isoscalar
effective mass m∗/m, symmetry energy asym in units of MeV,
and sum rule enhancement factor κTRK (equivalent to isovector
effective mass).

Force ρnm
E
A

K∞

m∗

m
asym κTRK

SkM* 0.160 −15.8 217 0.79 30 0.53
SLy6 0.159 −15.9 230 0.69 32 0.25
SkI3 0.158 −16.0 258 0.58 34 0.25
SkO4 0.161 −15.8 224 0.90 32 0.17

NL-Z2 0.151 −16.2 173 0.58 42 0.72
NL3 0.148 −16.2 272 0.60 37 0.68
PC-F1 0.151 −16.2 270 0.61 38 0.70

The basic properties of these forces in terms of nu-
clear matter parameters are given in table 1. A detailed
discussion is found in [11]. There are the typical systemat-
ical differences between RMF and SHF for the symmetry
energy and for the sum rule enhancement κTRK. These
may be related to different slopes in the spherical shell
gaps as seen in forthcoming figures. Note, in particular,
the large span of effective masses for SHF which cover the
range from 0.58 to 0.9 and which is the most important
variation because the effective mass has an influence on
the spectral gap as well as on deformation and correlation
properties.

2.2 Collective correlations

The Cd and Te isotopes far away from the magic neutron
shell N =82 turn out to be extremely soft in quadrupole
deformations. Their ground state goes beyond a pure
mean-field description. It is, in fact, a coherent superpo-
sition of mean-field states at various deformations. This
means that we include some correlations, namely those as-
sociated with low-energy collective motion. The effective
energy functionals can still be used for that task as low-
energy collective motion can be derived as the adiabatic
limit of time-dependent mean fields [26–28]. As practical
procedure, we employ the generator-coordinate method
(GCM) with Gaussian overlap approximation (GOA), see
e.g. [28,29]. In fact, we use a variant of GOA which takes
care of the topology of coupled rotations and quadrupole
vibrations [30–32]. We summarize here briefly the basic
ingredients. Details are found in [33,34].

A series of collectively deformed mean-field states |Φq〉
is generated by quadrupole-constrained Skyrme-Hartree-
Fock where q stands for the actual quadrupole momentum.
Their energy expectation value V(q) = 〈Φq|Ĥ|Φq〉 pro-
vides a raw collective potential in quadrupole space. The
path does also define the collective momentum as gener-
ator for deformation P̂q|Φq〉 = ı∂q|Φq〉. Collective masses
and moments of inertia are computed by linear response
to deformation, i.e. M−1

q = 〈[R̂q, [Ĥ, R̂q]]〉, where R̂q is
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defined from linear response to P̂q, i.e. [Ĥ, R̂q] ∝ P̂q, and
similarly to rotation (ATDHF cranking). Zero-point en-
ergies E(ZPE) for vibrations and rotations are computed
from the fluctuations in quadrupole 〈P̂ 2

q 〉 and angular mo-

mentum 〈Ĵ〉 together with the associated masses. These
constitute quantum corrections to the collective poten-
tial [35,36,13]. The true collective potential V is then ob-
tained from the raw potential V as

V = V − E(ZPE) .

All ingredients together finally yield a generalized collec-
tive Bohr-Hamiltonian

Ĥ(coll) = −
1

β4
∂βBβ4∂β −

1

β2 sin 3γ
∂γBγ sin 3γ ∂γ

+
3
∑

k=1

L̂′2
k

2Θk

+ V ,

where the potential V and masses B,Θ are functions of
deformation β, γ. The dependence on triaxiality γ is ob-
tained by interpolation of axial results, a procedure which
is justified for the nearly spherical nuclei considered here.
The ground-state solution in collective space then repre-
sents the collectively correlated ground-state energy. The
physical collective zero-point energy is, of course, positive,
but the quantum corrections which are subtracted from
the raw potential are larger, so that at the end we obtain
a more tightly bound correlated ground state.

3 Results and discussion

3.1 The effect of ground-state deformation

The mean-field description of nuclei provides the full de-
tails of the single-nucleon energies εk as eigenvalues of
the single-particle Hamiltonian. With this information at
hand, shell effects can be easily quantified in various man-
ners, e.g. as the spectral gap which is the energy differ-
ence between the highest occupied state and the lowest
unoccupied state (called HOMO-LUMO gap in molecu-
lar physics) or as the shell correction energy [37,38] (for
a recent analysis in super-heavy elements, see e.g. [11]).
There is, however, no direct experimental access to single-
nucleon spectra due to rearrangement and core polariza-
tion effects [6,7]. There remains as a fairly simple and ex-
perimental criterion the two-nucleon shell gaps from which
we discuss here in particular the two-proton shell gaps

δ2p(Z,N) = (E(Z−2)− 2E(Z) + E(Z+2))
∣

∣

∣

N
,

where |N means that all energies are taken at the same
neutron number N . The δ2p are just the second differences
of binding energies. That observable is close to twice the
spectral gap in the nucleus with (N,Z), provided that the
mean field does not undergo substantial changes from one
nucleus to the next. In an earlier publication, we had inves-
tigated the two-proton shell gap in the chain of Pb isotopes

and we found that deformation softness can indeed lead
to strong changes in the mean field which, in turn, modify
the two-nucleon gaps [10]. This helped to clarify a puzzle:
the experimental two-proton gaps hint a “shell quenching”
towards the proton drip line, while spherical mean-field
calculations show always a large and robust spectral gap.
The quenching seen for the δ2p is an effect of deformation
popping up in the step from Z=50 to the neighbors with
Z = 50± 2. Proper inclusion of ground-state deformation
delivered nice agreement between mean-field calculations
and data. We are now going to explore such effects for the
chain of Sn isotopes.

Figure 1 summarizes results from spherical and de-
formed mean-field calculations. The upper panels show
the spectral gaps in Sn isotopes. Within the SHF forces
they show a clear dependence on the effective mass: the
gaps increase with decreasingm∗/m. The comparison with
RMF hints that the symmetry energy has an impact on
the trend with neutron number. However, the gaps from
RMF are a bit lower than expected from the very low
effective masses in RMF. The reasons for that are still
unclear.

The middle panels of fig. 1 show the δ2p from spher-
ical mean-field calculations. At first glance, they behave
much similar to the spectral gap (upper panels), as ex-
pected. There are, however, changes in quantitative detail
due to spherical polarization and rearrangement effects.
The values are generally downshifted by 1–2 MeV and
the dependence on m∗/m is reduced. Nonetheless, these
corrections still stay sufficiently small [7] to leave δ2p as
approximate measure of the spectral shell gaps. On the
other hand the spherical δ2p are far from the data and the
deviation increases with decreasing neutron number.

The lowest panels of fig. 1 show results from axially
deformed mean-field calculations. The deformation when
active lowers the δ2p because the neighboring isotones
gain binding energy through deformation while Sn remains
spherical. In order to illustrate the mechanism, we sep-
arate the energies into (leading) spherical part and the
contribution from deformation:

δ2p(Z,N) = δ
(0)
2p (Z,N) + δ

(d)
2p (Z,N) ,

δ
(0)
2p (Z,N) =

(

E(0)(Z−2)− 2E(0)(Z) + E(0)(Z+2)
) ∣

∣

∣

N
,

δ
(d)
2p (Z,N) =

(

E(d)(Z−2) + E(d)(Z+2)
)
∣

∣

∣

N
< 0 .

E(0) is the energy of the spherical configuration. E(d) is the
gain in binding through deformation, thus E(d) < 0. The
Sn isotopes, the intermediate chain, stay spherical while
the softer neighbors Cd and Te develop deformation. This
produces the unique direction for the deformation effect
on δ2p for Sn. The detailed deformation energies for the
considered nuclei are shown in fig. 2. Comparing that with
the lowest panels of fig. 1 confirms that the reduction of
the δ2p around N ≈ 60 originates from the deformation of
the neighboring nuclei. All forces show the deformation ef-
fect towards the side of lowerN , but the onset of this effect
differs, mainly due to the differences in effective mass [39].



366 The European Physical Journal A

Fig. 1. Upper panels: twice the spectral gap for protons (difference between lowest unoccupied and highest occupied proton
state) along the chain of Sn isotopes. Middle panels: two-proton shell gaps δ2p calculated in the spherical mean field. Lower
panels: two-proton shell gaps δ2p calculated in the axially deformed mean field. The left panels shows results from various SHF
parameterizations as indicated and the right panels from RMF ones.

The lower m∗/m the later (in terms of low N) the onset.
The RMF results, for example, deform only for low N
and stay closer to each other with respect to the onset of
deformations because they have all about the same low
m∗/m. The case of SkO is an exception to that rule. Note
that this force was fitted with somewhat different condi-
tions, namely a strong constraint on the two-neutron shell
gap in 208Pb [19]. This seems to have deep consequences
on the shell structure with side-effects as observed here,
and in the forthcoming figures. Related to the shifted on-
sets is a shift of the minima in the curves. The first force
showing up with deformations, SkM∗, is also the first to

return to sphericity when approaching the lower neutron
shell closure at N = 50. Thus we see a clear maximum of
deformation effects within the plotting window. The other
forces will bend up as well, but outside the plotting win-
dow. In spite of the variations in the results, all models
still overestimate the two-proton shell-gap in the region
N = 72–80 as seen clearly in the lower panels of fig. 1.

3.2 The impact of ground-state correlations

A possible reason for that may be ground-state correla-
tions (GSC). Nuclei near the onset of deformation are
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Fig. 2. The deformation energy E(d) in the neighboring isotopic chains Cd and Te for the various forces as indicated.

usually soft against quadrupole fluctuations even if the
mean deformation still stays close to sphericity. These
quadrupole quantum fluctuations in the ground state lead
to a correlation which also produces extra binding. The
Sn nuclei are more rigid (owing to the proton shell closure
Z = 50) than their neighbors and thus we can expect a
further lowering of the δ2p particularly in the transitional
region. The effect on the δ2p is demonstrated in fig. 3 for
the force SkI3 as test case. We again see the significant
step towards the experimental trend when switching from
spherical to deformed mean-field calculations. The next
step is to account for the GSC and this indeed provides
the expected additional lowering of the δ2p. The effect is
particularly pronounced in the transitional region where
the deformation effect alone is still too small. However, it is
not yet large enough to reach agreement with the data. As
an aside, we note the somewhat strange detail at N = 82
where the correlation effect even changes sign. The nucleus
132Sn is doubly magic and we suspect that the simple pair-
ing treatment is a bit risky in the immediate vicinity of a
double shell closure, and it is just this vicinity which con-
tributes to the δ2p. On the other hand, the effect remains
rather small and well localized. It stays away from the
transitional region which is the focus of our discussions.

Complementing information on the correlation effect
is provided in fig. 4. The upper panel shows the squared

quadrupole expectation value 〈β̂2
2〉 for the correlated state.

It embraces the ground-state deformation as well as the
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Fig. 3. The two-proton shell gap δ2p calculated for the in-
teraction SkI3 with spherical mean field, deformed mean field,
and with collective GSC from quadrupole fluctuations (com-
puted as sketched in sect. 2.2). All cases used DI pairing. The
experimental data is taken from [3]

collective fluctuations. The fluctuation part is to a good
approximation proportional to the B(E2) values. The to-

tal 〈β̂2
2〉 is directly related to the correlation effect on the

r.m.s. radii [40,41]. There is, however, not such a direct
relation to the correlation energy as can be seen from com-
parison with the lower part of the figure. The reason is
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energy and the deformed mean-field minimum).

that the correlation energy is composed of two counteract-
ing contributions, the negative quantum correction energy
(see sect. 2.2) and the positive collective zero-point energy.

The 〈β̂2
2〉 is small for the semi-magic Sn isotopes, while it

grows systematically towards mid-shell for the neighbor-
ing elements Cd and Te. This shows that collective vi-
brations are much softer for these nuclei. The correlation
energy, on the other hand, grows towards mid-shell for all
three elements. But it is larger for Cd and Te in the tran-
sitional region such that finally the correlations just serve
to fill the gap between deformed results (lower panel in
fig. 1) and experiment.

In order to exclude that this may be a particular prob-
lem of the force SkI3 (used for fig. 3) in fig. 5 results
with GSC and for a broader variety of Skyrme forces are
shown. The force SkO (having a rather large effective mass
m∗/m = 0.9) is even farther away from the data, even
when including deformation and GSC as done here. The
other forces yield on the average the same result as we had
seen for SkI3 before. It is interesting to note that the ac-
tual size of the correlation effect differs amongst the forces
as can be seen from the fact that the ordering of the re-
sults in relation to data is different as in the deformed
mean field shown in fig. 1. The force SkI3 is a bit special
as it shows some fluctuations at neutron number N = 68
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Fig. 5. Computed δ2p including the quadrupole ground-state
correlations (GSC) for the three Skyrme interactions SkI3,
SLy6 and SkM* all using delta interaction (DI) pairing. The
experimental data are taken from [3]
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Fig. 6. As fig. 5, but with DDDI pairing.

which appear only when correlations are included. This
is due to a small sub-shell closure which exists for SkI3
and not for the other three forces. In spite of the observed
variances of the results, none of them reaches fully near
the data in a systematic manner.

Thus far we have considered a certain variation of
Skyrme forces. Pairing is the other crucial ingredient in
the effective energy functional. Up to now, we have con-
sidered only the DI pairing. A widely used alternative is
the surface, or DDDI, pairing. Figure 6 shows results of
calculations with ground-state correlations using the same
Skyrme forces as above, but now with DDDI pairing. The
force SkO behaves again a bit strange. The alternative
pairing recipe helps a bit but cannot counterweight the ob-
viously inappropriate mean-field background of this par-
ticular parameterization. The main effect is that DDDI
pairing reduces the two-proton shell gap by about one
more MeV and this brings the results for the three well-
performing forces (SkM∗, SLy6, SkI3) on top of the exper-
imental data. The effect of DDDI versus DI pairing is only
about 1 MeV for that subtle observable δ2p, but crucial for
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final success. The difference comes mainly from the neigh-
boring isotones Cd and Te which are a bit less soft with
DDDI. The example is one hint that DDDI pairing may be
more realistic, but much more evidence has yet to be col-
lected to support such a statement, see e.g. the many dis-
cussion of that question from different aspects in [42–44].

4 Conclusions

We have investigated the two-proton shell gap in Sn iso-
topes in the framework of self-consistent mean-field mod-
els, the Skyrme-Hartree-Fock approach as well as the rela-
tivistic mean-field model. In a first step beyond pure mean
field, we have also considered the effect of collective corre-
lations stemming from quadrupole vibrations. In order to
work out systematic trends, we have considered a variety
of different parameterizations in both mean-field models.

In a first step, we have investigated the effect of
ground-state deformations on the two-proton shell gap.
In both trend and order of magnitude the results were
quite similar to those of a previous study on Pb isotopes
thus corroborating that effect as a general feature for all
nuclei. The deformation effects are negligible only near the
doubly magic nuclei and take over as soon as the neutron
number is sufficiently far from a magic shell closure.

Different from our earlier studies on Pb isotopes, the
resulting two-proton shell gaps did not match the experi-
mental data even when including the deformation effects.
Thus we have also checked the impact of collective ground-
state correlations. They do indeed lower the two-proton
shell gap in the critical region by about 1–2 MeV and
thus bring the results closer to the data. It was then found
that a further crucial ingredient is the pairing model. We
compared a delta interaction (DI) pairing with a density-
dependent delta interaction (DDDI). There is again about
1 MeV difference in the results. The DDDI pairing to-
gether with the collective ground-state correlations finally
delivers a perfect agreement with the experimental data
for a variety of different Skyrme forces.

In summary, the results show that the two-proton shell
gap is a very subtle observable which is extremely sensitive
to various details of the treatment, spherical and deformed
polarization effects as well as correlations. The final result
reflects different features of the forces as, e.g., the effective
mass (which defines the underlying spectral gap) and the
various response parameters (which enter the polarization
effects). The two-nucleon shell gaps certainly provide use-
ful information about nuclear shell structure. But the situ-
ation is similarly involved as with single-nucleon informa-
tion from odd nuclei. It requires a careful consideration of
all ingredients to compare theory with experimental data.

The authors thank M. Bender for many inspiring discussions
and helpful remarks. This work was supported in part by
the Bundesministerium für Bildung und Forschung (BMBF),
Project Nos. 06 ER 808 and 06 ER 124.
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